
724 IE13E TRANSACTIONS ON MICROWAVE THSORY AND TECHNIQUES, VOL. MTT-27, NO. 8, AUGUST 1979

The Reflection Definition of the Characteristic
Impedance of Micros-trips

FRITZ ARNDT AND G. U. PAUL

Afwtract—Tbe frequency-dependent characteristic impedance of

shielded ndcroatrips is computed by the scattering matrix of the step of a
reetaagobu traasrakion line to the shielded ndcrostrip fncluding higher

order hybrid modes. ‘lIds method avoids the amb@tks of the hitherto
known definitions based on TEM quantities. For the dispersion efraraeter-
ktkw a resonant model is used wbieh reduces the number of the cbaraeter-
istic eqnations required. Numericaf results are given iacbrding strips of

ffnite thickness placed mrsymmetricaffy in the shielded nricroatrfp.

L INTRODUCTION

B IANCO et al. [1] discuss the hitherto known defini-

tions of the characteristic impedance of microstrips.

Denlinger’s TEM-like expression [2] leads to a decreasing

function. The other definitions [3]–[8] lead to an increas-

ing function. Although there exist hybrid-mode solutions

for the propagation constant of microstrip lines, the defi-

nitions for their characteristic impedance are still based

amazingly on TEM quantities like “mean voltage” or

“total current” which lose their uniqueness since other

than TEM modes propagate.

The purpose of this paper is to present a hybrid-mode

concept for calculating the frequency-dependent char-

acteristic impedance of shielded microstrip lines which

may help to resolve the obvious discrepancy between the

known definitions. Hereto, the scattering matrix of the

step of the rectangular transmission line with its known

characteristic impedance [9], [10] to the shielded micro-

strip line (Fig. 1) is computed including higher order

hybrid modes. Using the relation between the reflection

coefficient and the related input impedance [11], [12] the

interesting frequency-dependent characteristic impedance

can then be determined within an accuracy which de-

pends on the number of the hybrid modes considered.

This definition is adequate for the microstrip wave-propa-

gation concept since it takes into account the hybrid-

mode solution, and avoids the above-mentioned ambigui-

ties.
Concerning the eigenfunctions of the shielded rnicro-

strip line necessary for the field matching at the step

investigated (Fig, 1) for finite thick strips, it is appropriate

to use a method different from that given in [13], where a
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Fig. 1. Investigated rnicrostrip transmission fines. (a) Step between a
homogeneous- and an inhomogeneous-filled shielded stripline, (b)
Investigated cross section types.

subdivision into eight partial waveguides is required. The

cross section of the shielded microstrip line can be inter-

preted as a line resonator. This reduces the number of

characteristic equations required and thus allows more

hybrid modes to be considered. As a secondary objective

of this paper the dispersion characteristics of the first

eight hybrid modes are computed by this method and

compared with some results presented in [13], [14]. Fur-

ther, the analysis given holds for finite, thick strips placed

unsymmetrically in the shielded microstrip line.
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II. FORMULATION OF THE METHOD

A. Eigenfunctions for the Shielded Microstr@ Line

The hybrid modes on the shielded microstrip line are

derived from the axial z-components of the vector poten-

tials Ak and A.:

H= – ~ rot rot (Afiz 2=)+ rot (Ae=Zz).
jtip

(1)

The subdivision of the cross section according to Fig. 2(a)

leads to four parallel plate lines. Their vector potentials

can be written as a product of the eigenfunctions Vh,,(x,Y)

with the common propagation expression e “k=”= and the

square rootsl of the field impedances

k
zh=l/Yh=: ze=l/Ye=: (2)

z

A~z = ~ V~(.x,y)e-Jkzz
—

Ae= = V Y; V;(x,y)e-~k8z

v = I, Ha, Hb, and 111 (3)

with

mrx
Cos —

a [A1e+j%J’+~le--kb]‘:=.:O~~ n n
rmx

Cos —
V;I. = ~

.=0 If&

[A:he+,~l .%+ B IIue ‘Jk,&Y
n 1

mrx

v~lb=5 Sinrm(x–g–c) 1

~=1 a—g—c jk~~b

lThe amplitudes of the waves are so normalized that the transported
power

is 1 W for an amplitude 1 V/cm or 1 A/cm, respectively. The factor
e @ leads to 1 fork;> O, and to ?j fork: <O.

Y:— ———————— —

II I—————————.:K+rEII
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Fig. 2. Subdivision of the cross sections. (a) Subdivision of the cross
section of the shielded microstrip line into four parallel plate lines (the
boundary conditions at y = b – di2 – h and y = – dj2 – h are satisfied
by the resonant condition (1 l).) (b) Rectangular transmissiorr line
(homogeneous shielded stripline).

8.. = Kronecker delta.

B. Dispersion Characteristics of the Hybrid Modes

The eigenfunctions V(x,y) can be regarded as repre-

senting waves traveling in the ~y direction, with the still

unknown propagation constant k.,. It is Possible to define

the amplitudes: -

G(Y) =

dI~~
fJ;n(Y) = — . jkY~

dy

1
U:n(y) = —

jk~n

dU;.
Z:n(y) . — =

dy

The sum of the amplitudes of the waves in each parallel

plate line u (Fig. 2(a)) at its lower boundary (y =y~) is

determined by the sum of the amplitudes at its upper
boundary (y= y;):

(’7)
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with the diagonal matrices

(L))~~ = Cos (q; w) (L:) = – kjn sin (k~nw)

(L& = & sin (k~~w) (L:) = COS (kY; w)
yn

w =y[v —y;. (8)

The indexes c and s denote the cosine and sine function

(for k;; <0 the corresponding hyperbolic functions must

be chosen,)

The boundary conditions at the partial waveguides

g<x<g+c: E&=O

successively applied to (7) lead finally to the relation

between the amplitudes at the lower boundary (y= Y}lI =

– d/2 – h) and the amplitudes at the upper boundary

(Y ‘Y1 = b - d/2 - h, Fig. 2(a)):

[1Up Hu:

The quasi-transmission-line matrices L“ (u= I, II, 111)

(cf. (8)) transform the amplitudes from the upper to the

lower boundary. The transition matrices K& and K}I (cf.

Appendix) transform the amplitudes between the adjacent

parallel plate lines.

The still missing boundary condition at the metallic

surfaces at y = – d/2 – h and y = b – d/2 – h leads to the

resonant condition:

0=[2%1[3 (11)

The matrix of this characteristic equation(11) is the upper

right quarter of the matrix product of (1 O). The zeros of

the determinant which is a transcendent function of

k~n(~, cm):

{

g= g region IIa (Fig. 2(a))

a–g–c region II b

provide the interesting dispersion characteristic.

(12)

C. Eigenfunctions for the Rectangular Transmission Line

The cross section is suitably subdivided (Fig. 2(b)).

Unlike the treatment given in [9], the modes are each

derived from only one vector potential corresponding to

(3), and so remain uncoupled also beyond their cutoff

frequency. The eigenfunctions T(x,y) for the rectangular

transmission line are still similar to those given in [9] and

are merely stated in Appendix II for completeness.

D. The Scattering Matrix of the Step

Fig. 1 shows the step investigated. The transversal E-

and H-field strengths of the adjacent transmission lines

(1) and (2) are expressed by the eigenfunctions:

+ (~+e-JkzJz+~,-~ +,kqz)Zj’)=~&eQ j
J

J

+ –jk.,z _ Bj –e +jk,,.
)

ii$l)= ~ fi~](q e

j

I

grad Th X <, H-mode

;U = – grad T., E-mode

– grad Tl, TEM-mode
1

<j=<x<j (13)

Z:’) = ~ ~k(Ck e+ –jk..z + Ck–e +jk:kz
)

k

~~2) = ~ ~k( Ck+e ‘jkxkz – Ck-e +jk,,z)

k

{k= VZi grad Vhk x <- % grad Ve,

~k= fi grad V~k+ K grad Vek X<. (14)

(The indication u= I, II, III, Fig. 2(a) and (b), of the

subdivision of the cross sections is omitted in this chapter

for simplicity.) Bj+, Ck+ are the amplitudes of waves

traveling in the + z-direction, BJ-, Ck– are the amplitudes

of waves traveling in the – z-direction, cf. Fig. 1. ~e

indexes j and k designate transversal field vectors Zti, ky,

~k, ~,~ which cohere with the eigenfunctions and indicate

the order of their cutoff frequencies.

The boundary conditions at the step (z= O)

@)= E:’) ~:v s @’) (15)

lead to the matrix equations

B++ B-=( fi)Ke(C++C-)

B+– B-=(ti)Kh(C++C-). (16)

The vectors B+, B -, C‘, and C - contain the amplitudes

of the traveling waves, the diagonal matrices (~) and

(W) contain the square roots of the magnetic- or elec-

tric-field impedances Zh or Z., and the magnetic- or

electric-field admittances Y~ or Y,, respectively, (cf. (2)).

The electrical K, and the magnetic coupling matrix Kk are

given by the elements

(Ke)Jk = ~F,iJ”<kdF (Kh),k = ~F,ij”ikdF. (17)

The scattering matrix S of the step is given by eliminating
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Fig. 3. Dispersion diagrams. (a) Effective dielectric constant versus a/&; a= width of the shielded rnicrostrip line (cf. Fig. l(a); &= wavelength
in air; E%= hybrid mode with cutoff frequency at ~= O (fundamental mode); EH2 = hybrid mode with the second cutoff frequency and a
purely E-mode (TM-mode) at cutoff frequency, etc.; HE4 = hybrid mode with the fourth cutoff frequency and a purely H-mode (TE-mode) at
cutoff frequency, etc.; EY,0= LSE mode without strip, (dotted lines ---) etc.; . . . Kowalski and Pregla [ 13]; ----- Mittra and Itoh (from graphical

representation) [14]. (b) Dispersion characteristic of the first eight hybrid modes of a unsymmetrical microstrip line (cf. Fig. 1(h),

Q)(— HE-modes, ---- EH-modes) k= is the phase constant of the hybrid mode; and k.= co% .

B - and Cw in (16):

(2;)=s(%)
(18)

with

‘=(-(: :)+2( (n)Ke :)

( )(

.MMI o

))
(19)

M M O (ti)Kh

and

M=((fi)Ke+(W)Kh)-’

I= unit matrix.

The characteristic impedance Zo(a) of the shielded micro-

strip line is then computed by the reflection coefficient S11
(19) of the TEM-mode on the rectangular transmission

line [13], [14]:

(20)

where Z, is the known constant characteristic impedarwe

of the rectangular transmission line [9], [10].

III. RESULTS

In Fig. 3(a) the dispersion characteristics of the first

mode and the first higher order modes of a microstrip

with a cross section according to Kowalski and Ih-egla [ 12]

and Mittra and Itoh [13] are shown in order to compare

the results. The dispersion curves agree largely with those

of Kowalski and Pregla. They computed, however, only

the first two higher order modes and did not notice that

dispersion curves of hybrid modes can cross one another

in contrast to those of pure E- or H-modes. Our results do

not agree with Mittra and Itoh, especially the higher order
modes. Fig. 3(b) shows the dispersion characteristics of

the first eight eigenwaves of a unsymmetrical finite thick

microstrip line.

In order to obtain an impression of the accuracy of Ihe

computations the variation of the propagation constant k=

with the number N of eigenwaves was considered. For N

greater then eight, the variation of k, was less tharl 1
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Fig. 4. Scattering coefficients of the first three modes of the step from
the homogeneous shielded transmission line to the microstrip line
(example @ of Fig. l(b)) according to (19). (a) Reflection coefficients
on the homogeneous shielded transmission line if a TEM wave is
incident. gH1o is quasi- l+lo-mode (quasi-TEIO-mode) (the field is
equivalent to a TEIO-mode if the inner conductor vanishes), etc., (---
scattering coefficient below the eorresponding cutoff frequency). (b)
Transmission coefficients on the microstrip if a TEM wave is incident
on the homogeneous line.

percent. For the computations presented here N was cho-

sen to be ten.

The scattering matrix (19) of the steps for the three

examples of Fig. l(b) has been calculated. In Fig. 4 the

amount of the first scattering coefficients, for example (2)
of Fig. 1(b), is shown if a TEM wave is incident at the

homogeneous transmission line. As expected the TEM

wave transmits a large amount of its energy to the first

hybrid mode (fundamental mode) on the microstrip, the

other part is reflected (TEM wave). Beyond their cutoff
frequency the higher order hybrid modes take over a large

part of the energy. The cutoff frequency of the first higher

order hybrid mode limits the practically significant range

of application. If only the fundamental mode propagates,

approximately the classical transmission line theory can

be used, e.g., in the form of Carlin’s network model [15].

This approximate theory is, however, only available if the

effective dielectric constant as well as the characteristic

impedance are known.

In Fig. 5 the characteristic impedance curves according

to (20) of the microstrip examples of Fig. 1(b) are shown.

There are also indicated the cutoff frequencies a/& of

the first higher order mode of the examples (1) and (2)

(that of example (3) lies beyond a/~= O,4). For thick
strips (example (l)), and for low frequencies and frequen-

cies in the near of the cutoff frequency, we obtain an

increasing function as it is indicated in [3]–[8] for thin

strips and for the whole frequency range, but for mean

frequencies the characteristic impedance decreases as in-

dicated by Denlinger [2] also for the whole frequency

range. The dotted line shows values using his definition

for thick strips (example (l)), thus showing its limitation.

For thin strips (example (2) and especially (3)) we find

good agreement between his results and ours.
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APPENDIX I

The transition matrixes K~~l and K~l are given by

,111

.

and

y=}

with the abbreviations:

: K:

o

0

0

.

Pu 2Kt.—.
qac

l–u 2
—;K:

q

o

0

0

0

0 (1 - U)(K;KC)-lK;$ o

0 –pu(K:K,)-*K;; q(K:K~) -* K;;

(KcK;)-’Kcf o

0 (K, K;)-’K$f

I
o 0

0 0

00

00

(Al)

(A2)
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(KC)U=
VT(X – g– c)

cm
j~x

Cns—

1‘--J
a a—g—~ --- a

g+’ m m ‘x’‘>N1la’’’=N-lall-l
K: iS the transposed matrix, K, corresponds to the terms TEM.mode~:

in (A3) with sine instead of cosine. NIra is the number of

eigenfunctions considered in the partial waveguide IIa,

Fig. 2.

APPENDIX II

Eigenfunctions T(x,y) for the rectangular transmission

line:

H-modes:

mrx
m Cos —

rmrx
Cos —

T;ll = ~ D. a COS [ kj;l(y + d/2 + h)].
n=o Vl+aon

E-modes:

[1]

[2]

(A4)

[3]

[4]

[5]

[8]

(A3)

T;= ~ An sin ~ sinh
nr(y+d/2+h–b)

~=1 a

co
&b=l a–x nv(x –g– c)e –jkz + ~ sin

la—g–c ~=1 a—g—c

“[B; sinh ‘V + C.b cosh ‘V
a—g—c a—g—c 1

~ D. sin ~ sinh ‘T(Y ‘~/2+’). (A6)T,III = m

~=1
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Analysis of an End Launcher for an X-Band
Rectangular Waveguide

MANOHAR D. DESHPANDE, MEMBER, IEEE, B. N. DAS, AND GITINDRA S. SANYAL

Abwmct—l%e armfysis of an end-lauslrer typq coaxfaf-to-mctmguk

wavegukfe transitfo~ exciting domfnant ‘f&I mode in X-band mdanguk

waveguide is presented. Expressions for the real and imaginary parts of tbe

fnput bnpedaaee seen by the coaxiaf fine are derived for the generaf case

of an offset launcher usfng seff-reaction of an assumed current over tbe

loop. The dimensions of tbe comWmed electric and magnetic 100PO having

low input VSWR in the coaxial lfue are determined. There is satisfactory

agreement between theoretical and experfmentaf results.

I. INTRODUCTION

F or the excitation of a two-dimensional array of rect-

angular waveguide radiators it is found convenient

[1], [2] to use a colinear end-launcher transition from

coaxial line-to-rectangular waveguide. Investigations on

these types of transitions have been carried out by a

number of workers. Wheeler [3] has empirically investi-

gated the design of such a transition by matching the

waveguide-to-coaxial line with the help of two step ridge

transformers. Dix [4] also established a theoretical design

procedure for the transition with a mixed four-section

impedance transformer consisting of two ridged steps

within the waveguide, one TEM section in the coaxial

line, and a hybrid section where the coaxial center-

conductor extends into the guide. A theoretical analysis

for the design of a transition consisting of an L-shaped

concentric loop without any additional impedance trans-

former has been presented by Das and Sanyal [5]. In their

design, the dimensions of the L-shaped loop were selected

in such a way that the real part of the input impedance

seen by the coaxial line was equal to characteristic imped-

ance of the coaxial line. The input reactance cancellation

was achieved by a trial and error method. The bandwidth

of the transition was very narrow. The maximum input

Manuscript received June 14, 1978; revised October 18, 1978.
The authors are with the Department of Electronics and Electrical

Communications Engineering, Indian Institute of Technology, Kharag-
pur 721302, India.

VSWR of the transition was found to be 1.4 over the

frequency range 9.2–9.5 GHz (300 MHz). The bandwidth

of this type of transition can be more accurately de-

termined, and a method of its improvement can be found

if the explicit expressions for both real and imaginary

parts of the input impedance seen by the coaxial line in

terms of loop dimensions L,, a’, and b’ (Fig. 1) are known.

In this paper, a more general analysis applicable to

concentric as well as offset launcher in the form of an

L-shaped loop placed in a dominant TEO1-mode rectan-

gular waveguide is presented. The expressions for botb the

real and imaginary parts of input impedance seen by the

coaxial line are derived from the self-reaction o! an

assumed current over the probe. The expression for the

real part of input impedance is then used to find the IIoop

dimensions L}, a’, and b’ which give the real part of input

impedance to be equal or close to characteristic imped-

ance of the coaxial line over a range of frequencies. The

variation of input reactance for these loop dimensions is

computed as a function of frequency. From the variation

of input impedance, the loop dimensions Ll, a’, and b’

which give low input VSWR in the coaxial line over a

range of frequencies are determined. Theoretical andl ex-

perimental results for input VSWR are compared for a

transition with LI = 1.4 cm, a’= 0.4 cm, b’= 1.15 cm, and

the probe diameter 2R = 0.2 cm.

II. ANALYSIS

Fig. l(a) shows an L-shaped loop placed in a dominant

TEO1-mode rectangular waveguide and driven from a gen-

erator through a coaxial line. The input impedance !seen

by the coaxial line driving the L-shaped loop is obtained

from a stationary formula [6]:
+.

-= do‘i.lc= ‘~ ~: (1)

where ~ is the electric field inside the guide due to

0018-9480/79/0800-073 1$00.75 @1979 IEEE


