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The Reflection Definition of the Characteristic
Impedance of Microstrips

FRITZ ARNDT anp G. U. PAUL

Abstract—The frequency-dependent characteristic impedance of
shielded microstrips is computed by the scattering matrix of the step of a
rectangular transmission line to the shielded microstrip including higher
order hybrid modes. This method avoids the ambiguities of the hitherto
known definitions based on TEM quantities. For the dispersion character-
istics a resonant model is used which reduces the number of the character-
istic equations required. Numerical results are given including strips of
finite thickness placed unsymmetrically in the shielded microstrip.

I. INTRODUCTION

IANCO et al. [1] discuss the hitherto known defini-

tions of the characteristic impedance of microstrips.
Denlinger’s TEM-like expression [2] leads to a decreasing
function. The other definitions [3}-[8] lead to an increas-
ing function, Although there exist hybrid-mode solutions
for the propagation constant of microstrip lines, the defi-
nitions for their characteristic impedance are still based
amazingly on TEM quantities like “mean voltage” or
“total current” which lose their uniqueness since other
than TEM modes propagate.

The purpose of this paper is to present a hybrid-mode
concept for calculating the frequency-dependent char-
acteristic impedance of shielded microstrip lines which
may help to resolve the obvious discrepancy between the
known definitions. Hereto, the scattering matrix of the
step of the rectangular transmission line with its known
characteristic impedance [9], [10] to the shielded micro-
strip line (Fig. 1) is computed including higher order
hybrid modes. Using the relation between the reflection
coefficient and the related input impedance [11], [12] the
interesting frequency-dependent characteristic impedance
can then be determined within an accuracy which de-
pends on the number of the hybrid modes considered.
This definition is adequate for the microstrip wave-propa-
gation concept since it takes into account the hybrid-
mode solution, and avoids the above-mentioned ambigui-
ties.

Concerning the eigenfunctions of the shielded micro-
strip line necessary for the field matching at the step
investigated (Fig. 1) for finite thick strips, it is appropriate
to use a method different from that given in [13], where a
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Fig. 1. Investigated microstrip transmission lines. (a) Step between a
homogeneous- and an inhomogeneous-filled shielded stripline. (b)
Investigated cross section types.

subdivision into eight partial waveguides is required. The
cross section of the shielded microstrip line can be inter-
preted as a line resonator. This reduces the number of
characteristic equations required and thus allows more
hybrid modes to be considered. As a secondary objective
of this paper the dispersion characteristics of the first
eight hybrid modes are computed by this method and
compared with some results presented in [13], [14]. Fur-
ther, the analysis given holds for finite, thick strips placed
unsymmetrically in the shielded microstrip line.
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II. FORMULATION OF THE METHOD

A. Eigenfunctions for the Shielded Microstrip Line

The hybrid modes on the shielded microstrip line are
derived from the axial z-components of the vector poten-
tials 4, and 4,:

N 1 -
E=rot(4 + — A
rot (4,,€,) et rot rot (4,,¢€,)

1
H=—— rotrot (4,,€)+rot (4,,¢,). 1
T TOLTOU (44,8) + 10t (4,.2) M

The subdivision of the cross section according to Fig. 2(a)
leads to four parallel plate lines. Their vector potentials
can be written as a product of the eigenfunctions V, (x,y)
with the common propagation expression e 7% and the
square roots! of the field impedances
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'The amplitudes of the waves are so normalized that the transported
power
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is 1 W for an amplitude 1 V/cm or 1 A/cm, respectively. The factor
VZ VY* leads to 1 for k20, and to *j for k> <0.
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Fig. 2. Subdivision of the cross sections. (a) Subdivision of the cross

section of the shielded microstrip line into four parallel plate lines (the
boundary conditions at y=b—d/2—h and y = — d/2— h are satisfied
by the resonant condition (11).) (b) Rectangular transmission line
(homogeneous shielded stripline).
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n=1
d,, = Kronecker delta.

B. Dispersion Characteristics of the Hybrid Modes

The eigenfunctions V(x,y) can be regarded as repre-
senting waves traveling in the *y direction, with the still
unknown propagation constant k. It is possible to define
the amplitudes:

I (¥)= AletI5n 4 Bre ~Ihny
dar; ) »
Up(¥)= d;n = jkynlA,e +kw — Bre /]
1 - )
Un(»)= T [Cr:’e'*Jkyny__D’;'e—Jky,,y]
'yn
du;’ , y
Ie’;’(y) = —z):;’—l = C:C +ikny <+ D:e “_]IS;,,,V. (6)

The sum of the amplitudes of the waves in each parallel
plate line v (Fig. 2(a)) at its lower boundary (y=y/’) is
determined by the sum of the amplitudes at its upper
boundary (y=y,;):
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with the diagonal matrices

(L= coslhw) (L= —k;, sin (k},w)

v 1 : v v v
(Ls )nn = —iy;n— sm (kyn W) (Ls') = €OS (kyn W)

w=y;=.. (®)
The indexes ¢ and s denote the cosine and sine function
(for ky”,,2 <0 the corresponding hyperbolic functions must
be chosen.)
The boundary conditions at the partial waveguides

. I _ rlla I __ Ha
0<x <g . Ex,z - Ex,z Hx,z - HX.Z

g<x<g+c: E;1=0

ge<v<a BNl HU-HE O
successively applied to (7) lead finally to the relation
between the amplitudes at the lower boundary (y =y/"=
—d/2—h) and the amplitudes at the upper boundary

(y=yl=b—d/2—h, Fig. 2(a)):

U Uy
vt U,
- LYK LKL, . (10)
1, 1,
IIII II
y=y" Y=Yy

The quasi-transmission-line matrices L* (v=1, II, III)
(cf. (8)) transform the amplitudes from the upper to the
lower boundary. The transition matrices Kj5 and K}, (cf.
Appendix) transform the amplitudes between the adjacent
parallel plate lines.

The still missing boundary condition at the metallic
surfaces at y= —d/2—~h and y=b—d/2—h leads to the

resonant condition:
M hh M, he IhI
M, M,||I'|

€

0= (11)

The matrix of this characteristic equation (11) is the upper
right quarter of the matrix product of (10). The zeros of
the determinant which is a transcendent function of
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provide the interesting dispersion characteristic.

region I1a (Fig. 2(a))
region 115
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C. Eigenfunctions for the Rectangular Transmission Line

The cross section is suitably subdivided (Fig. 2(b)).
Unlike the treatment given in [9], the modes are each
derived from only one vector potential corresponding to
(3), and so remain uncoupled also beyond their cutoff
frequency. The eigenfunctions 7(x,y) for the rectangular
transmission line are still similar to those given in [9] and
are merely stated in Appendix II for completeness.

D. The Scattering Matrix of the Step

Fig. 1 shows the step investigated. The transversal E-
and H-field strengths of the adjacent transmission lines
(1) and (2) are expressed by the eigenfunctions:

E’t(1)= 2\/'27%(Bj+e—,k,,z+3j—e+jkzjz)
J

J

grad T, Xe,, H-mode
e,={ —grad 7, E-mode
—grad T, TEM-mode
hy=&%& (13)
E@= & (Cle 7+ Cre s
k
ﬁt(z) =3 E;k(ck-»e ki — Cle +jk,kz)
k
€x=VZy, grad V, Xe,—VZ, grad V,,
izk= VY, grad V,, + VY, grad V, Xe, (14)

(The indication v=1I, II, III, Fig. 2(a) and (b), of the
subdivision of the cross sections is omitted in this chapter
for simplicity.) B;*, C," are the amplitudes of waves
traveling in the + z-direction, B,~, C are the amplitudes
of waves traveling in the —z-direction, cf. Fig. 1. The
indexes j and k designate transversal field vectors e, k,,
€., h, which cohere with the eigenfunctions and indicate
the order of their cutoff frequencies.

The boundary conditions at the step (z=0)

EO=EP  HP=HP (15)
lead to the matrix equations
B*+B =(VY)K(C*+C)
B*—B - =(VZ)K,(C*+C"). (16)

The vectors B*, B~, C*, and C ~ contain the amplitudes
of the traveling waves, the diagonal matrices (VZ ) and
(VY ) contain the square roots of the magnetic- or elec-
tric-field impedances Z, or Z, and the magnetic- or
electric-field admittances Y, or Y,, respectively, (cf. (2)).
The electrical K, and the magnetic coupling matrix K, are
given by the elements

(&ufggaﬁ <@uag@mﬂtan
S S

The scattering matrix S of the step is given by eliminating
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Fig. 3. Dispersion diagrams. (a) Effective dielectric constant versus a/Ag; a=width of the shielded microstrip line (cf. Fig. 1(a); Ag=wavelength
in air; EH,=hybrid mode with cutoff frequency at f=0 (fundamental mode); EH,=hybrid mode with the second cutoff frequency and a
purely E-mode (TM-mode) at cutoff frequency, etc.; HE,=hybrid mode with the fourth cutoff frequency and a purely H-mode (TE-mode) at
cutoff frequency, etc.; E, ;o= LSE mode without strip, (dotted lines ---) etc.; - - - Kowalski and Pregla [13]; -.-.- Mittra and Itoh (from graphical
representation) [14]. (b) Dispersion characteristic of the first eight hybrid modes of a unsymmetrical microstrip line (cf. Fig. 1(b),

@)(——HE-modes, ---- EH-modes) k, is the phase constant of the hybrid mode; and ky=w

B~ and C* in (16):
B \_ B*)
(e+)=s(e-
with

e gty )

G e vzl @

M=((VY)K,+(VZ)K,)"'

I =unit matrix.

(18)

and

The characteristic impedance Zy(w) of the shielded micro-
strip line is then computed by the reflection coefficient S,
(19) of the TEM-mode on the rectangular transmission
line [13], [14]:

1"|S11|

Zy(w)=Z,—1L
o= Z T35,

(20)

Ko€o -

where Z, is the known constant characteristic impedarce
of the rectangular transmission line [9], [10].

II1.

In Fig. 3(a) the dispersion characteristics of the first
mode and the first higher order modes of a microstrip
with a cross section according to Kowalski and Pregla [12]
and Mittra and Itoh [13] are shown in order to compare
the results. The dispersion curves agree largely with those
of Kowalski and Pregla. They computed, however, only
the first two higher order modes and did not notice that
dispersion curves of hybrid modes can cross one another
in contrast to those of pure E- or H-modes. Our results do
not agree with Mittra and Itoh, especially the higher order
modes. Fig. 3(b) shows the dispersion characteristics of
the first eight eigenwaves of a unsymmetrical finite thick
microstrip line.

In order to obtain an impression of the accuracy of the
computations the variation of the propagation constant &,
with the number N of eigenwaves was considered. For N
greater then eight, the variation of k, was less than 1

REsuULTS
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Fig. 4. Scattering coefficients of the first three modes of the step from
the homogeneous shielded transmission line to the microstrip line
(example @ of Fig. 1(b)) according to (19). (a) Reflection coefficients
on the homogeneous shielded transmission line if a TEM wave is
incident. gH,, is quasi-H;;-mode (quasi-TE;j-mode) (the field is
equivalent to a TE;y-mode if the inner conductor vanishes), etc., (---
scattering coefficient below the corresponding cutoff frequency). (b)
Transmission coefficients on the microstrip if a TEM wave is incident

on the homogeneous line.

percent. For the computations presented here N was cho-
sen to be ten.

The scattering matrix (19) of the steps for the three
examples of Fig. 1(b) has been calculated. In Fig. 4 the
amount of the first scattering coefficients, for example (2)
of Fig. 1(b), is shown if a TEM wave is incident at the
homogeneous transmission line. As expected the TEM
wave transmits a large amount of its energy to the first
hybrid mode (fundamental mode) on the microstrip, the
other part is reflected (TEM wave). Beyond their cutoff
frequency the higher order hybrid modes take over a large
part of the energy. The cutoff frequency of the first higher
order hybrid mode limits the practically significant range
of application. If only the fundamental mode propagates,
approximately the classical transmission line theory can
be used, e.g., in the form of Carlin’s network model [15].
This approximate theory is, however, only available if the

effective dielectric constant as well as the characteristic
impedance are known.

In Fig. 5 the characteristic impedance curves according
to (20) of the microstrip examples of Fig. 1(b) are shown.
There are also indicated the cutoff frequencies a /X, of
the first higher order mode of the examples (1) and (2)
(that of example (3) lies beyond a/A;=0,4). For thick
strips (example (1)), and for low frequencies and frequen-
cies in the near of the cutoff frequency, we obtain an
increasing function as it is indicated in [3]-[8] for thin
strips and for the whole frequency range, but for mean
frequencies the characteristic impedance decreases as in-
dicated by Denlinger [2] also for the whole frequency
range. The dotted line shows values using his definition
for thick strips (example (1)), thus showing its limitation.
For thin strips (example (2) and especially (3)) we find
good agreement between his results and ours.
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The transition matrixes Kjj; and Kj} are given by
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e _ q a’ s
i 0 0
IeIII 0 0
L 2 L
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Ul || (KKK
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AT _1 _ %%
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and

jmx

imx
COs — COS

g g
d s
fo V1+8, i+8, iy

(K.)g=1

cos vr(x—g—c) Jmx
fa a—g—¢
sre V148, 1+

L
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i< NUa
. (A3)

dx, i>N"y=;—NUi_]

K/ is the transposed matrix, K, corresponds to the terms
in (A3) with sine instead of cosine. N* is the number of
eigenfunctions considered in the partial waveguide Ila,
Fig. 2.

APPENDIX 11

Eigenfunctions T(x,y) for the rectangular transmission
line:

H-modes:
nmx
[+ cos —
Tl= 3 4,——2— cos [kyln(y+a'/2+h—b)]

V1i+3d,,

w COS — 1l
g sin (k ‘jz)
Tje= ————| B%cos (kXy)+ Co ———=
'Eo \/I—-rci; ( s “y) kylrlza
cos nr(x—g—c)
T,,Hb i a—-g—c¢
n=b V1+8§,,
sin (kM5
BY cos (kny)+C? I(c"y" ) 8)]
‘yn
CcOS E—W—)ﬁ [2]
T = 2 D,———— cos [k\Ny+d/2+h)]. (A4)
"Vi+s,,
[3]
E-modes: [4]
% sin [ k(v +d/2+h—b)]
1_ . hmx [ Y {51
T!= gl A, sin m
n= 'y
(6]
© kH‘f)))
a_ . RTX ( a 11
T = 'El sin — B¢ e +C¢ cos (k) o
s na(x—g—c) I8}
T! rg] sin pp—
5 ———( = y) + C? cos (k"”y)
" [10]
sin [ AKXy +d/2+h 11
TeIII 2 D nTX [ yn (y / ):, . (AS) [ ]

ko' [12]

TEM-modes:

na(y+d/2+h—b)
a

sinh

[>e]
. nmx
= Y A, sin

n=1

nTx

[eo]
TM=Ix/ge %"+ 3> sin

n=1

-{B,f sinh "—;y~+c,;' cosh i’gly—}

Tenb=11 a—x —sz+ 2 sin mr(x g— C)
a—g—c iy a—g—c
-| B? sinh _nw)_/_ + C? cosh —ﬂy—]
a—g- —g—c
o0
TH= 3 D, sin 2= sinh mr(y+;1/2+h) . (A6)
n=1
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Analysis of an End Launcher for an X-Band
Rectangular Waveguide

MANOHAR D. DESHPANDE, MEMBER, IEEE, B. N. DAS, anD GITINDRA S. SANYAL

Abstract—The analysis of an end-laucker type, coaxial-to-rectangular
waveguide transition, exciting dominant TEy; mode in X-band rectangular
waveguide is presented. Expressions for the real and imaginary parts of the
input impedance seen by the coaxial line are derived for the general case
of an offset launcher using self-reaction of an assumed current over the
loop. The dimensions of the combined electric and magnetic loops having
low input VSWR in the coaxial line are determined. There is satisfactory
agreement between theoretical and experimental results.

I. INTRODUCTION

or the excitation of a two-dimensional array of rect-
Fangular waveguide radiators it is found convenient
[1], [2] to use a colinear end-launcher transition from
coaxial line-to-rectangular waveguide. Investigations on
these types of transitions have been carried out by a
number of workers. Wheeler [3] has empirically investi-
gated the design of such a transition by matching the
waveguide-to-coaxial line with the help of two step ridge
transformers. Dix [4] also established a theoretical design
procedure for the transition with a mixed four-section
impedance transformer consisting of two ridged steps
within the waveguide, one TEM section in the coaxial
line, and a hybrid section where the coaxial center-
conductor extends into the guide. A theoretical analysis
for the design of a transition consisting of an L-shaped
concentric loop without any additional impedance trans-
former has been presented by Das and Sanyal [5]. In their
design, the dimensions of the L-shaped loop were selected
in such a way that the real part of the input impedance
seen by the coaxial line was equal to characteristic imped-
ance of the coaxial line. The input reactance cancellation
was achieved by a trial and error method. The bandwidth
of the transition was very narrow. The maximum input

Manuscript received June 14, 1978; revised October 18, 1978.
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VSWR of the transition was found to be 1.4 over the
frequency range 9.2-9.5 GHz (300 MHz). The bandwidth
of this type of transition can be more accurately de-
termined, and a method of its improvement can be found
if the explicit expressions for both real and imaginary
parts of the input impedance seen by the coaxial line in
terms of loop dimensions L,, @', and b’ (Fig. 1) are known.

In this paper, a more general analysis applicable to
concentric as well as offset launcher in the form of an
L-shaped loop placed in a dominant TEy-mode rectan-
gular waveguide is presented. The expressions for both the
real and imaginary parts of input impedance seen by the
coaxial line are derived from the self-reaction of an
assumed current over the probe. The expression for the
real part of input impedance is then used to find the loop
dimensions L,, 4’, and b’ which give the real part of input
impedance to be equal or close to characteristic imped-
ance of the coaxial line over a range of frequencies. The
variation of input reactance for these loop dimensions is
computed as a function of frequency. From the variation
of input impedance, the loop dimensions L,, a’, and 4’
which give low input VSWR in the coaxial line over a
range of frequencies are determined. Theoretical and ex-
perimental results for input VSWR are compared for a
transition with L,=1.4 cm, a’=0.4 cm, »'=1.15 cm, and
the probe diameter 2R =0.2 cm.

II. ANALYSIS

Fig. 1(a) shows an L-shaped loop placed in a dominant
TE,,-mode rectangular waveguide and driven from a gen-
erator through a coaxial line. The input impedance seen
by the coaxial line driving the L-shaped loop is obtained
from a stationary formula [6]:

- BT 4o (1)
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where E is the electric field inside the guide due to
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